3.3.62 \(\int \frac {(a+a \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [262]

Optimal. Leaf size=169 \[ \frac {3 a^{3/2} C \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a^2 (8 A-3 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {a (2 A-3 C) \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

3*a^(3/2)*C*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2/3*A*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d/sec
(d*x+c)^(1/2)+1/3*a^2*(8*A-3*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)-1/3*a*(2*A-3*C)*sin(d*x+c
)*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.31, antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {4172, 4103, 4100, 3886, 221} \begin {gather*} \frac {3 a^{3/2} C \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a^2 (8 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}-\frac {a (2 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{3 d}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(3*a^(3/2)*C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a^2*(8*A - 3*C)*Sqrt[Sec[c + d*x]]
*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) - (a*(2*A - 3*C)*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*Sin
[c + d*x])/(3*d) + (2*A*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 4172

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx &=\frac {2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \int \frac {(a+a \sec (c+d x))^{3/2} \left (\frac {3 a A}{2}-\frac {1}{2} a (2 A-3 C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{3 a}\\ &=-\frac {a (2 A-3 C) \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {1}{4} a^2 (8 A-3 C)+\frac {9}{4} a^2 C \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{3 a}\\ &=\frac {a^2 (8 A-3 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {a (2 A-3 C) \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {1}{2} (3 a C) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a^2 (8 A-3 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {a (2 A-3 C) \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {(3 a C) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {3 a^{3/2} C \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a^2 (8 A-3 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {a (2 A-3 C) \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(382\) vs. \(2(169)=338\).
time = 6.46, size = 382, normalized size = 2.26 \begin {gather*} \frac {6 C \cos ^3(c+d x) \left (-\log (1+\sec (c+d x))+\log \left (\sqrt {\sec (c+d x)}+\sec ^{\frac {3}{2}}(c+d x)+\sqrt {1+\sec (c+d x)} \sqrt {-1+\sec ^2(c+d x)}\right )\right ) (a (1+\sec (c+d x)))^{3/2} \sqrt {-1+\sec ^2(c+d x)} \left (A+C \sec ^2(c+d x)\right ) \sin (c+d x)}{d \left (1-\cos ^2(c+d x)\right ) (A+2 C+A \cos (2 c+2 d x)) (1+\sec (c+d x))^{3/2}}+\frac {\sqrt {(1+\cos (c+d x)) \sec (c+d x)} (a (1+\sec (c+d x)))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \left (\frac {16 A \cos (d x) \sin (c)}{3 d}+\frac {2 A \cos (2 d x) \sin (2 c)}{3 d}-\frac {2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (8 A \sin \left (\frac {d x}{2}\right )-3 C \sin \left (\frac {d x}{2}\right )\right )}{3 d}+\frac {16 A \cos (c) \sin (d x)}{3 d}+\frac {2 A \cos (2 c) \sin (2 d x)}{3 d}-\frac {2 (8 A-3 C) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{(A+2 C+A \cos (2 c+2 d x)) \sec ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x))^{3/2}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(6*C*Cos[c + d*x]^3*(-Log[1 + Sec[c + d*x]] + Log[Sqrt[Sec[c + d*x]] + Sec[c + d*x]^(3/2) + Sqrt[1 + Sec[c + d
*x]]*Sqrt[-1 + Sec[c + d*x]^2]])*(a*(1 + Sec[c + d*x]))^(3/2)*Sqrt[-1 + Sec[c + d*x]^2]*(A + C*Sec[c + d*x]^2)
*Sin[c + d*x])/(d*(1 - Cos[c + d*x]^2)*(A + 2*C + A*Cos[2*c + 2*d*x])*(1 + Sec[c + d*x])^(3/2)) + (Sqrt[(1 + C
os[c + d*x])*Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2)*(A + C*Sec[c + d*x]^2)*((16*A*Cos[d*x]*Sin[c])/(3*d) +
 (2*A*Cos[2*d*x]*Sin[2*c])/(3*d) - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]*(8*A*Sin[(d*x)/2] - 3*C*Sin[(d*x)/2]))/(3*d)
 + (16*A*Cos[c]*Sin[d*x])/(3*d) + (2*A*Cos[2*c]*Sin[2*d*x])/(3*d) - (2*(8*A - 3*C)*Tan[c/2])/(3*d)))/((A + 2*C
 + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(3/2)*(1 + Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [A]
time = 21.20, size = 229, normalized size = 1.36

method result size
default \(-\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (9 C \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}+9 C \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}+8 A \left (\cos ^{3}\left (d x +c \right )\right )+32 A \left (\cos ^{2}\left (d x +c \right )\right )-40 A \cos \left (d x +c \right )+12 C \cos \left (d x +c \right )-12 C \right ) \cos \left (d x +c \right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} a}{12 d \sin \left (d x +c \right )}\) \(229\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/12/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(9*C*sin(d*x+c)*cos(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/4*(-
2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)+9*C*sin(d*x+c)*cos(d*x+c)*(-2/(1+cos(d*x+c
)))^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)+8*A*cos(d*x+c)^3+32*
A*cos(d*x+c)^2-40*A*cos(d*x+c)+12*C*cos(d*x+c)-12*C)*cos(d*x+c)*(1/cos(d*x+c))^(3/2)/sin(d*x+c)*a

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 1183 vs. \(2 (145) = 290\).
time = 0.64, size = 1183, normalized size = 7.00 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/12*(4*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 9*sqrt(2)*a*sin(1/2*d*x + 1/2*c))*A*sqrt(a) + 3*(3*(a*log(2*cos(1/2*
d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) +
2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*si
n(1/2*d*x + 1/2*c) + 2) + a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x +
1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*s
qrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c)^2 + 3*(a*log(2*cos(1/2*d*x
 + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)
- a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1
/2*d*x + 1/2*c) + 2) + a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2
*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt
(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*sin(3/2*d*x +
 3/2*c) - 4*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 2*(2*sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 2*sqrt(2)*a*sin(1/2*d*x + 1
/2*c) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(
2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2
*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c
)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x +
 2*c) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(
2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2
*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c
)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 4*(sqrt(2)
*a*cos(3/2*d*x + 3/2*c) - sqrt(2)*a*cos(1/2*d*x + 1/2*c))*sin(2*d*x + 2*c))*C*sqrt(a)/(cos(2*d*x + 2*c)^2 + si
n(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1))/d

________________________________________________________________________________________

Fricas [A]
time = 2.20, size = 368, normalized size = 2.18 \begin {gather*} \left [\frac {9 \, {\left (C a \cos \left (d x + c\right ) + C a\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (2 \, A a \cos \left (d x + c\right )^{2} + 10 \, A a \cos \left (d x + c\right ) + 3 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{12 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {9 \, {\left (C a \cos \left (d x + c\right ) + C a\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, {\left (2 \, A a \cos \left (d x + c\right )^{2} + 10 \, A a \cos \left (d x + c\right ) + 3 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

[1/12*(9*(C*a*cos(d*x + c) + C*a)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*c
os(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x +
 c)^3 + cos(d*x + c)^2)) + 4*(2*A*a*cos(d*x + c)^2 + 10*A*a*cos(d*x + c) + 3*C*a)*sqrt((a*cos(d*x + c) + a)/co
s(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d), 1/6*(9*(C*a*cos(d*x + c) + C*a)*sqrt(-a)*ar
ctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*
cos(d*x + c) - 2*a)) + 2*(2*A*a*cos(d*x + c)^2 + 10*A*a*cos(d*x + c) + 3*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*
x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3006 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^(3/2)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(3/2),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________